Алюминий А5
Марка: А5 | Класс: Алюминий первичный |
Использование в промышленности: алюминий технической чистоты |
Химический состав в % сплава А5 | ||
Fe | до 0,3 | |
Si | до 0,3 | |
Ti | до 0,03 | |
Al | 99,5 | |
Cu | до 0,02 | |
Zn | до 0,06 |
Дополнительная информация и свойства |
Твердость материала: HB 10 -1 = 20 МПа |
Механические свойства сплава А5 при Т=20oС | |||||||
Прокат | Размер | Напр. | σв(МПа) | sT (МПа) | δ5 (%) | ψ % | KCU (кДж / м2) |
Лист отожжен. | 60 | 20-28 |
Особенности проката (волочение проволоки) алюминия А5 (и сходных сплавов):
Вначале изготавливается заготовка для последующего волочения, проволочная заготовка может быть получена прокаткой, прессованием или литьем. Прокаткой получают заготовку диаметром 8—10 мм из алюминия А5-А8, сплавов В65 и Д18.
Для получения заклепочной проволоки крупных размеров и некоторых видов сварочной проволоки используют прессованную заготовку.
Литьем получают в основном заготовку для сварочной проволоки. При этом используют два метода — Проперци и Головкина.
По методу Головкина из расплава через матрицу вытягивают затравку. Уровень металла на 5—10 мм превышает горизонт, на котором установлена матрица. Поэтому шлаковые включения из верхнего слоя расплава могут попадать в заготовку, если в зоне матрицы не установлены фильтры, очищающие расплав. Кроме того, в печах промышленного типа емкостью 250— 300 кг металл находится в расплавленном состоянии длительное время (практически до 200 ч и более). Это приводит к осаждению более тугоплавких элементов (цирконий и др.) на дно ванны и постепенному накапливанию их в донных слоях расплава. В то же время магний выгорает и его количество в расплаве уменьшается. Это создает трудности в получении сплавов, содержащих магний и цирконий.
Недостаток метода Головкина - необходимость поддержания определенной температуры расплава, значительно изменяющейся для различных сплавов: для АК, АК4, АМгЗ, АМг5, АМг6 680-705° С, для АМг7 780—810° С для АК12 705—720° С.
Другой недостаток метода заключается в колебаниях диаметра получаемой заготовки, что ведет к необходимости выравнивания размеров заготовки и ее свойств путем волочения и дополнительного отжига.
Метод Проперци заключается в том, что подаваемый из нижней части распределительной коробки расплав кристаллизуется в канале литейного колеса, прикрытом натянутой металлической лентой. Метод позволяет получать заготовку различных сплавов, одинаковую по размерам поперечного сечения и свободную от неметаллических включений, которая сразу же попадает в 12—17-клетевой прокатный стан и прокатывается до диаметра 8—15 мм.
Полученная по обоим методам заготовка имеет литую структуру, поэтому при волочении или прокатке этой заготовки в первых двух-трех проходах приходится давать пониженные вытяжки. Других особенностей технология производства проволоки, получаемой из литой заготовки, не имеет.
Вытяжки при волочении проволоки из алюминия и его сплавов назначаются в соответствии с изложенным в первом разделе этой главы. Средняя и максимальная величины их составляют соответственно: для алюминия А5-А8 1,45 и 1,52; для АМц 1,31 и 1,43; для АМг 1,27 и 1,38; для ДЗП и Д18 1,24 и 1,33; для АМг5 и Д16П 1,20 и 1,25. Средние вытяжки между отжигами составляют: для алюминия А5-А8 до 100; для АМц 3,6; для АМг 3,0; для ДЗП и Д18 2,8; для АМг5 и Д16П 2,2; для В65 1,9; для В92 1,2. При волочении алюминия А5-А8 применяют
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σtТ | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |