Чугун СЧ10
Марка: СЧ10 | Класс: Чугун серый |
Использование в промышленности: для изготовления отливок |
Химический состав в % чугуна СЧ10 | ||
C | 3,5 - 3,7 | |
Si | 2,2 - 2,6 | |
Mn | 0,5 - 0,8 | |
S | до 0,15 | |
P | до 0,3 | |
Fe | ~92 |
Дополнительная информация и свойства |
Твердость материала: HB 10 -1 = 120 - 205 МПа |
Механические свойства чугуна СЧ10 при Т=20oС | |||||||
Прокат | Размер | Напр. | σв(МПа) | sT (МПа) | δ5 (%) | ψ % | KCU (кДж / м2) |
100 |
Физические свойства чугуна СЧ10 | ||||||
T (Град) | E 10- 5 (МПа) | a 10 6 (1/Град) | l (Вт/(м·град)) | r (кг/м3) | C (Дж/(кг·град)) | R 10 9 (Ом·м) |
20 | 0.9 | 60 | 6800 | |||
100 | 8 | 460 |
Механические особенности чугонов СЧ (и некоторых других): влияние графитовых включений на различные эксплуатационные свойства чугуна многообразно и не однозначно.
При нагружении чугуна графитовые включения, являясь «надрезами», снижают его прочность и пластичность. Это происходит, во-первых, вследствие некоторого уменьшения живого сечения металлической основы из-за полостей, занятых графитом, имеющим небольшую прочность на разрыв, и, во-вторых, что наиболее важно, из-за высокой концентрации напряжений, возникающей в местах графитовых включений, особенно при пластинчатой форме графита. Чем длиннее пластинки графита, тем больше коэффициент концентрации напряжений. Все это приводит к резкой локализации пластических деформаций в металлической основе, исчерпанию пластичности материала в этих местах, развитию трещин и в итоге — к квазихрупкому разрушению материала при средних напряжениях и показателях пластичности, более низких, чем прочность и пластичность металлической основы чугуна.
Кроме того, из-за разного коэффициента термического расширения графита и металлической основы при охлаждении отливок в чугуне возникают структурные напряжения II рода, которые, постепенно возрастая, достигают предела упругости материала в местах концентрации налряженнй (при пластинчатой
форме графита). Поэтому дополнительная внешняя нагрузка любой величины вызывает необратимые пластические деформации в материале, и чугун с пластинчатым графитом в литом состоянии, по существу, не имеет предела упругости. Однако он может приобрести это свойство в результате «тренировки» различными нагрузками, приводящими к упрочнению металлической основы в местах концентрации напряжений. Этой же цели могут служить различные варианты термомеханической или термоциклической обработки, что особенно важно для высокоточных деталей прецизионных станков и других подобных машин.
Упрочнение металлической основы в местах концентрации напряжений происходит при естественном старении отливок из чугуна с пластинчатым графитом (вылеживании) даже при отсутствии напряжений I рода, из-за протекания релаксационных процессов высоких напряжений II рода. В результате возрастает сопротивляемость образованию пластических деформаций при нагружении небольшими нагрузками. Указанный процесс интенсифицируется при вылеживании отливок на воздухе, когда добавляется термоциклическое воздействие изменений погодных условий.
Модуль упругости чугуна Е из-за графитовых включений ниже, чем у его металлической основы, так как образуются дополнительные обратимые деформации полостей, занятых графитом, особенно заметные при больших нагрузках. Поэтому значение Е уменьшается с увеличением нагрузки.
Все отмеченные явления становятся менее заметными при увеличении дисперсности пластинчатого графита до 100—200 мкм и особенно при его компактных формах (вермикулярный, шаровидный графит). Поэтому ковкий и высокопрочный чугуны при одинаковой структуре металлической основы имеют более высокую прочность, модуль упругости, пластичность; у них появляется предел упругости.
Наличие графитовых включений делает чугун, особенно с пластинчатым графитом, практически не чувствительным к надрезам, что позволяет конкурировать ему с более прочной сталью по сопротивлению усталости и пределу выносливости. Включения графита обеспечивают высокую износостойкость чугуна в условиях трения скольжения со смазкой и т. д.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σtТ | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |