Сталь марки 40Х

Марка: 40Х (заменители 45Х, 38ХА, 40ХН, 40ХС, 40ХФ, 40ХР)
Класс: Сталь конструкционная легированная
Вид поставки: сортовой прокат: в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 2879-2006, ГОСТ 10702-78.Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73. Шлифованный пруток и серебрянка ГОСТ 14955-77. Лист толстый ГОСТ 1577-93, ГОСТ 19903-74. Полоса ГОСТ 103-2006, ГОСТ 1577-93, ГОСТ 82-70. Поковки ГОСТ 8479-70. Трубы ГОСТ 8731-74, ГОСТ 8733-74, ГОСТ 13663-86.
Использование в промышленности: оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, губчатые венцы, болты, полуоси, втулки и другие улучшаемые детали повышенной прочности.
Химический состав в % стали 40Х
C 0,36 - 0,44
Si 0,17 - 0,37
Mn 0,5 - 0,8
Ni до 0,3
S до 0,035
P до 0,035
Cr 0,8 - 1,1
Cu до 0,3
Fe ~97
Зарубежные аналоги марки стали 40Х
США 5135, 5140, 5140H, 5140RH, G51350, G51400, H51350, H51400
Германия 1.7034, 1.7035, 1.7045, 37Cr4, 41Cr4, 41CrS4, 42Cr4
Япония SCr435, SCr435H, SCr440, SCr440H
Франция 37Cr4, 38C4, 38C4FF, 41Cr4, 42C4, 42C4TS
Англия 37Cr4, 41Cr4, 530A36, 530A40, 530H36, 530H40, 530M40
Евросоюз 37Cr4, 37Cr4KD, 41Cr4, 41Cr4KD, 41CrS4
Италия 36CrMn4, 36CrMn5, 37Cr4, 38Cr4KB, 38CrMn4KB, 41Cr4, 41Cr4KB
Бельгия 37Cr4, 41Cr4, 45C4
Испания 37Cr4, 38Cr4, 38Cr4DF, 41Cr4, 41Cr4DF, 42Cr4, F.1201, F.1202, F.1210, F.1211
Китай 35Cr, 38CrA, 40Cr, 40CrA, 40CrH, 45Cr, 45CrH, ML38CrA, ML40Cr
Швеция 2245
Болгария 37Cr4, 40Ch, 41Cr4
Венгрия 37Cr4, 41Cr4, Cr2Z, Cr3Z
Польша 38HA, 40H
Румыния 40Cr10, 40Cr10q
Чехия 14140
Австралия 5132H, 5140
Юж.Корея SCr435, SCr435H, SCr440, SCr440H
Дополнительная информация и свойства
Удельный вес: 7820 кг/м3
Твердость материала:
HB 10 -1 = 217 МПа
Температура критических точек: Ac1 = 743 , Ac3(Acm) = 815 , Ar3(Arcm) = 730 , Ar1 = 693
Флокеночувствительность: чувствительна
Свариваемость: трудносвариваема. Способы сварки: РДС, ЭШС, необходимы подогрев и последующая термообработка. КТС - необходима последующая термообработка.
Обрабатываемость резанием: в горячекатаном состоянии при HB 163-168 и σв=610 МПа, К υ тв. спл=1,2 и Кυ б.ст=0,95
Температура ковки, °С: начала 1250, конца 800. Сечения до 350 мм охлаждаются на воздухе.
Склонность к отпускной хрупкости: склонна
Механические свойства стали 40Х
ГОСТ Состояние поставки, режим термообработки Сечение, мм КП σ0,2 (МПа)
σв(МПа) δ5 (%) ψ % KCU (кДж / м2) НВ, не более
4543-71
Пруток. Закалка 860 °С, масло. Отпуск 500 °С, вода или масло
25
780
980
10
45
59
8479-70 Поковки:
нормализация
500-800
300-500
245
275
245
275
470
530
15
15
30
32
34
29
143-179
156-197
закалка, отпуск
500-800 275 275
530
13
30
29
156-197
нормализация до 100
100-300
315 315 570 17
14
38
35
39
34
167-207
закалка, отпуск 300-500
500-800
315 315 570 12
11
30
30
29
29
167-207
нормализация до 100
100-300
300-500
345 345
345
590 18
17
14
45
40
38
59
54
49
174-217
закалка, отпуск до 100
100-300
300-500
395 395 615 17
15
13
45
40
35
59
54
49
187-229
Механические свойства стали 40Х в зависимости от сечения
Сечение, мм σ0,2 (МПа) σв(МПа) δ4 (%) ψ % KCU (кДж / м2) HB
Закалка 840-860 °С, вода, масло. Отпуск 580-650 °С, вода, воздух.
101-200 490 655 15 45 59 212-248
201-300 440 635 14 40 54 197-235
301-500 345 590 14 38 49 174-217
Механические свойства стали 40Х в зависимости от температуры отпуска
Температура отпуска, °С σ0,2 (МПа) σв(МПа) δ5 (%) ψ % KCU (кДж / м2) HB
200 1560 1760 8 35 29 552
300 1390 1610 8 35 20 498
400 1180 1320 9 40 49 417
500 910 1150 11 49 69 326
600 720 860 14 60 147 265
Механические свойства стали 40Х при повышенных температурах
Температура испытаний, °С σ0,2 (МПа) σв(МПа) δ5 (%) ψ % KCU (кДж / м2)
Закалка 830 °С, масло. Отпуск 550 °С
200
300
400
500
700
680
610
430
880
870
690
490
15
17
18
21
42
58
68
80
118

98
78
Образец диаметром 10 мм, длиной 50 мм кованый и отоженный. Скорость деформирования 5 мм/мин, скорость деформации 0,002 1/с
700
800
900
1000
1100
1200
140
54
41
24
11
11
175
98
69
43
26
24
33
59
65
68
68
70
78
98
100
100
100
100
Предел выносливости стали 40Х
σ-1, МПА
J-1, МПА
n Состояние стали
363
470
509
333
372



240

106
106

5*106

σв=690 МПа
σв=690 МПа
σ0,2=690 МПа, σв=690 МПа
σв=690 МПа
Закалка 860 °С, масло, отпуск 550 °С
Ударная вязкость стали 40Х KCU, (Дж/см2)
Т= +20 °С
Т= -25 °С Т= -40 °С Т= -70 °С Термообработка
160
91
148
82
107

85
54
Закалка 850 °С, масло, отпуск 650 °С
Закалка 850 °С, масло, отпуск 580 °С
Прокаливаемость стали 40Х (ГОСТ 4543-71)
Расстояние от торца, мм Примечание
1,5 4,5 6 7,5 10,5 13,5 16,5 19,5 24 30 Закалка 860 °С
20,5-60,5 48-59
45-57,5
39,5-57
35-53,5
31,5-50,5
28,5-46
27-42,5 24,5-39,5
22-37,5 Твердость для полос прокаливаемости, HRC
Физические свойства стали 40Х
T (Град) E 10- 5 (МПа) a 10 6 (1/Град) l (Вт/(м·град)) r (кг/м3) C (Дж/(кг·град)) R 10 9 (Ом·м)
20 2.14 7820 210
100 2.11 11.9 46 7800 466 285
200 2.06 12.5 42.7 7770 508 346
300 2.03 13.2 42.3 7740 529 425
400 1.85 13.8 38.5 7700 563 528
500 1.76 14.1 35.6 7670 592 642
600 1.64 14.4 31.9 7630 622 780
700 1.43 14.6 28.8 7590 634 936
800 1.32 26 7610 664 1100
900 26.7 7560 1140
1000 28 7510 1170
1100 28.8 7470 120
1200 7430 1230

Расшифровка марки стали 40Х: эта марка означает, что в стали содержится 0,40% углерода и менее 1,5% хрома.

Преимущества термообработки изделий из стали 40Х в кипящем слое по сравнению с традиционными способами: был исследован нагрев под закалку высокопрочных болтов из сталей 40Х и 38ХС. Из опытов следует, что при горизонтальном положении болта М24 в кипящем слое частиц корунда диаметром 0,32 мм, отапливаемом природным газом, медленнее всего температура повышается на оси болта в месте стыка его тела и головки. Скорость нагрева в этой точке почти вдвое меньше, чем на поверхности в середине болта, так что во избежание перегрева температура кипящего слоя не должна заметно превышать конечную температуру нагрева. В слое с температурой 900° С болт прогревается до 860° С примерно за 3 мин (термопара зачеканена на оси под головкой), в то время как в применяемых в настоящее время электропечах К-160 нагрев до 860° С длится, по нашим экспериментальным данным, 40 мин. За это время в электропечах образуется значительный слой отслаивающейся окалины, в то время как при нагреве в кипящем слое с двухступенчатым сжиганием поверхность получается чистой. Эксперименты показали, что для аустенизации достаточна выдержка болтов из обеих сталей при температуре слоя 860-870° С в течение 10-15 мин. Поскольку скорость охлаждения этих изделий в кипящем слое оказалась недостаточной, закалку осуществляли в масле. Отпущенные после закалки (410° С, 80 мин) болты отличались высокими показателями прочности при достаточной пластичности:

Сталь 40Х: σв=147-150 кгс/мм2, ан=3,84-3,27 кгс*м/см2, HB 345-360

Сталь 38ХС: σв=165-173,5 кгс/мм2, ан=3,18-4,41 кгс*м/см2, HB 400-430

(ударную вязкость ан определяли на образцах, предел прочности σв на целых болтах).

Параллельно болты М24 из стали 38ХС после выдержки в кипящем слое с температурой 910° С (15 мин) охлаждали в соляной ванне при 360° С (20 мин) с целью получения структуры нижнего бейнита. При достаточно высокой прочности (σв = 163 кгс/мм2) была получена значительно большая ударная вязкость (8,65- 10,6 кгс-м/см2). Наконец, часть болтов из стали 38ХС после такого же нагрева выдерживали в масле в течение 42 с, а затем переносили в кипящий слой температурой 360° С. Такой режим позволил повысить предел прочности до 171,5-173 кгс/мм2, но несколько снизил ударную вязкость (ан = 6,25-6,72 кгс.м/см2). Как показали исследования, нагрев в течение 8-10 мин в слое температурой 910° С обеспечивает превращение исходной ферритокарбидной смеси в аустенит и получение достаточно однородных свойств.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
  ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
  Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
  σизг - предел прочности при изгибе, МПа
δ5,δ4,δ10 - относительное удлинение после разрыва, %
  σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
  J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
  n - количество циклов нагружения
sв - предел кратковременной прочности, МПа   R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
  E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2   T - температура, при которой получены свойства, Град
sT - предел пропорциональности (предел текучести для остаточной деформации), МПа   l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
  C - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу   pn и r - плотность кг/м3
HRCэ
- твердость по Роквеллу, шкала С
  а - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
  σtТ - предел длительной прочности, МПа
HSD
- твердость по Шору   G - модуль упругости при сдвиге кручением, ГПа
Наверх
Напишите нам