Сталь конструкционная 40ХСН2МА

Марка: 40ХСН2МА Класс: Сталь конструкционная легированная
Использование в промышленности: для высоконагруженных деталей, не имеющих значительных концентраторов напряжения и работающих при температуре от -70 до 250°C
Дополнительная информация и свойства
Термообработка: Закалка 900oC, масло, Отпуск 200 - 260oC,
Механические свойства стали 40ХСН2МА при Т=20oС
Прокат Размер Напр. σв(МПа) sT (МПа) δ5 (%) ψ % KCU (кДж / м2)
1800-2000
Физические свойства стали 40ХСН2МА
T (Град) E 10- 5 (МПа) a 10 6 (1/Град) l (Вт/(м·град)) r (кг/м3) C (Дж/(кг·град)) R 10 9 (Ом·м)
20 1.95 28.1 7810 430
100 11.2 28.9 0.503
200 12.7 30.2 0.545
300 13.5 31.4 0.587
400 14.2

Рекомендуемые режимы термической обработки для стали 40ХСН2МА (а также 30ХГСН2А, 25Х2ГНТА):

Рекомендуемые режимы упрочняющей термической обработки и свойства сталей. Для достижения высокой прочности среднелегированные стали подвергают обычной закалке на мартенсит и низкому отпуску при 220— 250 °С, который улучшает пластичность, вязкость и особенно сопротивление разрушению при сохранении высокого уровня прочности.

Во многих случаях еще более высокий комплекс этих свойств, определяющих конструкционную прочность стали, достигается в результате изотермической закалки на нижний бейнит или низкой изотермической закалки, после которой структура стали состоит из нижнего бейнита и мартенсита. В ряде случаев после изотермической закалки проводят низкий отпуск, что улучшает сопротивление разрушению.

Приведены рекомендуемые режимы упрочняющей термической обработки среднелегированных сталей. Стали имеют повышенную прокаливаемость: сталь 25Х2ГНТА — до 30 мм; сталь 30ХГСН2А — до 80 мм; для стали 40ХСН2МА размеры сечения не регламентируются.

Прочность среднелегированных сталей тем выше, чем больше в них содержание углерода, но при этом будет более низким показатель трещиностойкости Kic, в том числе сопротивление коррозии под напряжением. Поверхностное пластическое деформирование затрудняет образование трещины усталости, замедляет скорость роста малых трещин и значительно повышает сопротивление малоцикловой усталости как на воздухе, так и в коррозионной среде. Для защиты от общей коррозии деталей из этих сталей применяют кадмирование, оксидное фосфатирование. Сопротивление коррозии под напряжением можно существенно повысить, применив в качестве финишной операции поверхностное пластическое деформирование: дробеструйное, пневмодинамическое, вибронаклеп и др. В ряде случаев эффект ППД тем выше, чем выше уровень достигаемых при этом остаточных напряжений и больше глубина наклепанного слоя. С этих позиций особенно эффективны обкатка, раскатка и алмазное выглаживание. Алмазное выглаживание успешно применяется как операция, предшествующая хромированию поверхностей, от которых требуется высокая износостойкость (например, в паре шток—цилиндр). Малоцикловая усталость ушковых соединений может быть значительно (в 1,5— 2 раза по числу циклов) улучшена путем раскатки поверхности отверстия проушины. Значительнее (до 5—10 раз) увеличивается долговечность в результате запрессовки стальной втулки с натягом 0,4—1,2%.

Разрабатывается принципиально новый метод повышения усталостной прочности высокопрочных сталей, заключающийся в имплантации генерируемых источником высокой энергии ионов азота, бора и других в поверхностные слои стальной детали.

При применении среднелегированных сталей высокой прочности следует учитывать их повышенную чувствительность к концентрации напряжений, особенно при циклических нагрузках и высоких значениях коэффициента формы.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
  ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
  Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
  σизг - предел прочности при изгибе, МПа
δ5,δ4,δ10 - относительное удлинение после разрыва, %
  σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
  J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
  n - количество циклов нагружения
sв - предел кратковременной прочности, МПа   R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
  E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2   T - температура, при которой получены свойства, Град
sT - предел пропорциональности (предел текучести для остаточной деформации), МПа   l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
  C - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу   pn и r - плотность кг/м3
HRCэ
- твердость по Роквеллу, шкала С
  а - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
  σtТ - предел длительной прочности, МПа
HSD
- твердость по Шору   G - модуль упругости при сдвиге кручением, ГПа
Наверх
Напишите нам