Цинк ЦП2

Марка: ЦП2 Класс: Цинковый литейный сплав
Использование в промышленности: для литья протекторов
Химический состав в % сплава ЦП1
Fe
Si
Al
Cu
Pb
Mg
Zn
Sn
Cd
Свойства и характеристики ЦП2:
Плотность ЦП1, г/см3: 7,1
Потенциал отрицательный, мВ: стационарный = 820; рабочий = 750
Токоотдача, А*ч/кг: теоритическая = 820; фактическая 740
Удельный расход, кг/(А*год): 11,8
Механические свойства сплава ЦП2 при Т=20oС
Прокат Размер Напр. σв(МПа) sT (МПа) δ5 (%) ψ % KCU (кДж / м2)








Физические свойства сплава ЦП2
T (Град) E 10- 5 (МПа) a 10 6 (1/Град) l (Вт/(м·град)) r (кг/м3) C (Дж/(кг·град)) R 10 9 (Ом·м)
20


7,1


Особенности получения цинка ЦП2: марка относится к сплавам системы Zn-Al-Mg-Mn. К промышленным сплавам этой системы относится сплав ЦП2, нашедший широкое применение для приготовления литых протекторов. Приготовление сплава можно осуществлять в тигельных печах с газовым и электрическим обогревом, а также в индукционных печах.

Приготовление сплава ЦП2 значительно усложнено вследствие значительного различия в плотностях, температурах плавления цинка и легирующих компонентов. В процессе приготовления сплава наблюдаются существенные потери легирующих элементов и ухудшается качество цинковых сплавов.

Последовательность и условия введения легирующих элементов при приготовлении сплава ЦП2 имеют важное значение, так как влияют на их потери и качество сплава. Для определения потерь легирующих компонентов и их уменьшения при получении сплава, ЦП2, а также снижения брака литых протекторов по химическому составу были проведены эксперименты по различным технологическим вариантам, отражающим условия введения элементов и особенности технологии приготовления цинковых сплавов. Приготовление сплавов проводили в тигельной электрической печи сопротивления. Расчетное количество вводимых в цинковый расплав алюминия, марганца и магния отвечало ОСТ 5.3072-75 на сплав ЦП2 и составляло, %: А1 0,53-0,6; Мn 0,1-0,31; Mg 0,11-0,31. Легирующие компоненты вводили в цинковый расплав при 460-480 °С из чистых металлов, двойных и более сложных по составу лигатур. Пробы отбирали после введения всех компонентов и отстаивания расплава в течение 15-20 мин.

Данные табл. 42 о содержании легирующих компонентов при приготовлении сплава на основе цинка по различным вариантам свидетельствуют о больших различиях в расчетном (Р) и фактическом (Ф) содержании элементов в сплаве ЦП 2 в зависимости от условий их введения.

Таблица 42. Содержание легирующих компонентов при приготовлении сплавов на основе цинка по различным вариантам

Номер варианта Последовательность введения легирующих элементов Al, % Mn, % Mg, %

Р Ф Р Ф Р Ф
I Zn, Al 0,55 0,59
II Zn, Mn 0,20 0,10
III Zn, Mg 0,30 0,28
IV Zn, Mn, Al, Mg 0,60 0,80 0,26 0,20 0,31 0,32
V Zn, Al, (Mn + Mg) 0,60 0,74 0,31 0,22 0,31 0,33
VI Zn, (Mn + Mg), Al 0,60 0,70 0,25 0,14 0,32 0,24
VII Zn, (Al + 22% Mn), Mg 0,57 0,60 0,16 0,14 0,26 0,31
VIII Zn, (Zn + 0,71% Mn), (Zn + 0,9% Al), (Zn + 5,1% Mg), 0,54 0,59 0,23 0,20 0,34 0,30
IX Zn, (Zn + 5,4% Al + 0,8%Mg + 1,2%Mn) 0,53 0,57 0,10 0,088 0,11 0,15

Примечание. В скобках указаны элементы, вводимые одновременно.

Усвоение легирующих компонентов при их введении по вариантам I-IX также различно и составляет, %: А1 105,2-137,0; Мn 42,5-88,3; Mg 75,0-136,0.

Указанные выше варианты можно разделить на три группы: 1) легирующие компоненты вводятся в расплав в чистом виде по отдельности при получении двойных сплавов на основе цинка (/, II, III); 2) легирующие компоненты вводятся в расплав в чистом виде в различной последовательности при получении сплава ЦП2 (IV, V, VI); 3) легирующие компоненты вводятся в расплав в чистом виде (магний) и из лигатур (алюминий, марганец, магний) при получении сплава ЦП2 (варианты VII, VIII, IX).

Следовательно, введение легирующих компонентов в чистом виде (варианты первой группы) обеспечивает наибольшую степень усвоения алюминия (108,1 %); степень усвоения магния составляет 93,3 %, а марганца 60%. Изменение последовательности введения легирующих компонентов (варианты второй группы) приводит к различной степени усвоения алюминия, магния и марганца, уменьшающейся, как и в вариантах первой группы, от алюминия к марганцу. Превышение фактического содержания элементов в сплавах против расчетных значений (усвоение элементов выше 100%) в ряде вариантов объясняется повышенным угаром цинка. Степень усвоения марганца, несмотря на потери цинка, низка (42,5-77,0%), особенно при его введении вместе с магнием ( VI). Результаты, полученные при сравнении вариантов IV, V и VI (третья группа), показывают, что на потери магния большое влияние оказывает алюминий, вводимый в расплав после магния. Наименьшие потери магния наблюдаются при его введении в конце плавки (IV, V).

Наименьшие потери легирующих компонентов при их введении из чистых металлов будут наблюдаться при следующей очередности загрузки элементов: Al, Mn, Mg. С применением для введения марганца двойных (VII, VIII) и более сложных по составу лигатур (IX) несколько сокращаются потери марганца и повышается степень его усвоения с 42,5 до 88,3 % (IX). Для снижения потерь марганца целесообразно его вводить в цинковый расплав в виде лигатуры А1-Мп (10-20%).

На основании полученных результатов плавку цинкового сплава ЦП2 в тигельных электропечах следует проводить в следующей последовательности: в разогретый до 400-500 °С тигель или плавильную печь загружают 2/3 цинка марки ЦВ1 или ЦВ с содержанием железа 0,001 % и лигатуру А1-Мп, приготовленную на алюминии марки А95 и марганце марки МРО. После расплавления и перегрева расплава до 480-490 °С осуществляют тщательное перемешивание сплава, вводя оставшуюся часть цинка. После этого под уровень расплава вводят с помощью дырчатого колокольчика навеску предварительно нагретого до 120-150 °С магния. Далее при 470-480 °С рафинируют расплав путем введения в него ZnCl2 (NH4C1) в количестве 0,1-0,2% от массы сплава.

В случае производства цинковых сплавов в больших количествах широкое применение находят канальные индукционные печи типа ИЦ20.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
  ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
  Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
  σизг - предел прочности при изгибе, МПа
δ5,δ4,δ10 - относительное удлинение после разрыва, %
  σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
  J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
  n - количество циклов нагружения
sв - предел кратковременной прочности, МПа   R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
  E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2   T - температура, при которой получены свойства, Град
sT - предел пропорциональности (предел текучести для остаточной деформации), МПа   l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
  C - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу   pn и r - плотность кг/м3
HRCэ
- твердость по Роквеллу, шкала С
  а - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
  σtТ - предел длительной прочности, МПа
HSD
- твердость по Шору   G - модуль упругости при сдвиге кручением, ГПа
Наверх
Напишите нам